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1. Introduction
Double scattering-based proton therapy systems often use patient-specific range compensators for beam
modulation. Range compensators adjust the depth in the tissue at which protons reach their Bragg peak.
Accurately representing range compensators in Monte Carlo particle transport simulations is a vitally important
problem for clinical treatment planning. This paper proposes two new computational geometry range
compensator representations.

The authors have implemented the proposed range compensator representations in Tool for Particle
Simulation (TOPAS) [1][2]. TOPAS aims at making Monte Carlo simulation faster and easier to use for
clinicians and researchers. TOPAS employs the Geant4 [3] simulation toolkit for the underlying physics
processes, and TOPAS offers numerous features that enable radiation therapy simulations. TOPAS includes a
collection of customizable geometries for radiation therapy systems.

2. Methods and Materials

Figure 1: Example range compensator

Treatment planning systems such as Eclipse [4] and XiO [5] design patient-specific compensators. XiO
and Eclipse output text or XML files containing a series of positions and drill depths to represent cutouts from
a solid cylinder of water-equivalent plastic such as Lucite. A milling machine produces the compensator by
drilling these of holes out of a cylinder of a plastic cylinder. Each drill hole may have a unique depth, such as
in Figure 1. Unique drill hole depths allow the compensator to reduce the proton energy by different amounts
in different (x,y) positions, thus shaping the distal end of the beam.

For Sections 2.1 and 2.2, we assume that the only knowledge of the compensator design is provided by an
Eclipse or XiO output file.

2.1. Exact Compensator Representation with Boolean Solids

To precisely represent a compensator in TOPAS, we simulate a plastic cylinder with a number of holes drilled
out. We represent these holes as cylinders of air inside the larger plastic cylinder. To achieve this, we use
a Geant4 geometrical construct called the boolean solid [6]. Boolean solids are primitive geometries (e.g.
cylinders) that are allowed to overlap. We construct an exact representation of a range compensator by
producing a union‡ of all the drill holes and then subtracting this union from the plastic cylinder. Figure 2a

‡ G4UnionSolid in Geant4 terminology
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(a) (b)

Figure 2: Left: Range compensator modeled with boolean solids. Right: Range compensator modeled with
hexagonal prisms.

presents a Geant4 visualization [7] of how we use boolean solids to model a simple compensator with a 4 cm
outer diameter and drill holes with a diameter of 0.475 cm.

Unlike most Geant4 solids, boolean solids are allowed to overlap. Therefore, for the example in Figure 2a,
Geant4’s ability to track particles is not impaired even though the cylinders overlap. If a particle moves into
the large plastic cylinder, Geant4 checks whether the particle’s new location is inside any of the air holes in
the cylinder. Checking every air hole can be time consuming, as we will see in the Results section.

In contrast, Geant4’s navigation system employs performance numerous optimizations in order to only
explore nearby geometries when tracking particles through non-boolean solids.

2.2. Fast Compensator Approximation with Hexagonal Prisms

The compensator representation presented in Section 2.1 uses boolean solids and therefore requires significant
computational overhead for particle tracking. Our next goal is to develop a more efficient compensator
representation that does not use boolean solids. Thus, to avoid using boolean solids, we must design a
compensator representation that has no overlap among geometric pieces.

To avoid overlap, we approximate each drill hole as a hexagonal prism. We choose hexagons, because they
can be clustered without overlap or gaps (Figure 2b). We fill each simulated hexagonal prism with air and
place it inside the plastic cylinder.

The benefit of this representation is that it avoids overlaps, which allows us to avoid using computationally-
expensive boolean solids. However, unlike the precise compensator model produced with boolean solids, the
hexagonal prism model does not correctly represent the drill hole depth in regions where drill holes overlap.
Thus, the clustered hexagonal prisms form an approximation of the real compensator’s shape.

2.3. Simulation Design

To compare the compensator representations in Figure 2a and 2b, we simulate particle tracking through
each representation. We use the same patient-specific compensator for all simulations. This patient-specific
compensator is comprised of a Lucite cylinder with a 14 cm diameter, which has 84 holes drilled out. Each
drill hole has a 0.475 cm diameter.

To test the computational efficiency of our compensator representations, we use a beam of uncharged,
non-interacting simulation particles called Geantinos. This allows us to focus on the efficiency of particle
navigation in these compensators. Although we use Geantinos instead of protons, we select a realistic beam
energy, spread, and spot size for a proton therapy system.

To test the accuracy of the compensator representations, we use a simulated version of the Massachusetts
General Hospital Francis H. Burr Proton Therapy Center (FHBPTC) beamline in TOPAS. We simulate ten
million protons through the FHBPTC beamline, and we capture all particles in phase space immediately
before they pass through the compensator. Next, we begin each simulation with this phase space. We position
a box-shaped water phantom at the end of the beamline, two centimeters downstream of the compensator. For
scoring the particles, we partition the phantom into small bins, which each have a 0.0475 cm width ( 1

10 of the
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drill hole diameter), 0.0475 cm height, and 0.2 cm depth. For the accuracy results in the next section, we focus
on the bins located at the distal portion of the beam. By studying the fluence through these bins in several
experiments, we compare beam profiles generated by each of the compensator representations.

We conducted all of our simulations on a system with 8 GB of memory, using one core of a 2.6 GHz AMD
Opteron processor. To ensure the repeatability of our results, each simulation was the only user process on the
system.

3. Results
3.1. Computation Time
As we mentioned earlier, Geant4 has particle navigation optimizations that improve the performance of
the hexagonal prisms representation. However, these optimizations do not apply to the boolean solids
representation. Therefore, it is significantly less time-consuming to track particles through hexagonal prism
compensator than it is for the boolean solid-based compensator.

To focus on the computation time of only the compensator, the results in Figure 3 represent the time
for the particles to travel through just the compensator (and not through the entire beamline). Each data
point in Figure 3 is the average of 20 simulations. We notice in Figure 3 that the boolean solid’s computation
increases exponentially with the number of drill holes used in the compensator. In contrast, the hexagonal
prism’s computation time is approximately constant without regard to the number of drill holes.
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Figure 3: Relationship between number of drill holes and computation time.

3.2. Accuracy

Fluence, Boolean Solids
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Figure 4: Boolean solid fluence map.

Figure 4 illustrates the fluence of a beam that passes through our precise compensator representation.
The hexagonal prisms-based compensator provides a nearly identical fluence distribution. We verify this
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Fluence Percent Difference
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Figure 5: Percent difference between the fluence maps.

assertion in Figure 5, in which each pixel represents the percent difference between one bin of the phantom
for each compensator representation. We take the precise boolean solids compensator as the reference data
and the approximate hexagonal prism-based compensator as the experimental data. Figure 5 shows that
our compensator representations agree to within 3%. Further, as we show in our forthcoming paper and
presentation on this work, the differences shown in Figure 5 are largely due to statistics instead of geometry.

4. Conclusions
Developing flexible geometry components is a fundamental problem for Monte Carlo dose calculation. There-
fore, we introduced two strategies for representing range compensators in the TOPAS proton therapy simula-
tion. One of these strategies uses Geant4 boolean solids to precisely represent the overlapping drill holes in
the real compensator geometry. A second strategy is to approximate the compensator’s shape with hexagonal
prisms instead of overlapping cylinders. We find that the hexagonal prism approximation offers a reduction in
computation time, which enables faster clinical simulations. Further, since the hexagonal prism and boolean
solids representations offer very similar fluence distributions, the hexagonal prism representation is suitable for
clinical use.

TOPAS is supported by the US National Institutes of Health under contract number 1R01CA140735-01.
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