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ABSTRACT
2D image convolution is ubiquitous in image processing and computer
vision problems such as feature extraction. Exploiting parallelism is
a common strategy for accelerating convolution. Parallel processors
keep getting faster, but algorithms such as image convolution remain
memory bounded on parallel processors such as GPUs. Therefore, re-
ducing memory communication is fundamental to accelerating image
convolution. To reduce memory communication, we reorganize the
convolution algorithm to prefetch image regions to register, and we do
more work per thread with fewer threads. To enable portability to fu-
ture architectures, we implement a convolution autotuner that sweeps
the design space of memory layouts and loop unrolling configurations.
We focus on convolution with small filters (2x2–7x7), but our tech-
niques can be extended to larger filter sizes. Depending on filter size,
our speedups on two NVIDIA architectures range from 1.2x to 4.5x
over state-of-the-art GPU libraries.

Index Terms— Convolution, parallel, GPU, autotuning

1. INTRODUCTION
Convolution is a key component in most algorithms for feature extrac-
tion, image segmentation, object tracking, and object recognition. In a
recent “periodic table” of the fifteen most recurring computational pat-
terns in image processing and computer vision literature, convolution
ranked as the most ubiquitous, followed by histogram accumulation,
vector distance, and quadratic optimization [1]. Our work focuses on
image convolution with small nonseperable filters (2x2 to 7x7), which
are extremely common for edge detection, feature extraction [2], and
difference of gaussians [3].

The computer architecture community has developed many-
threaded processors that offer tremendous boosts in peak FLOP/s
over traditional single-core CPUs. However, improvements to mem-
ory bandwidth and latency have lagged behind the improvements to
the processors themselves. As a result, the performance of convolution
and other algorithms with low computational complexity tend to be
limited by the memory bandwidth, much like trying to drink a thick
milkshake through a narrow straw.

Parallel processors keep getting faster, but algorithms like convo-
lution remain memory-bounded on these architectures. The solution
is to redesign algorithms with the goal of minimizing communication
among off-chip memory, on-chip shared memory, and registers. On a
variety of parallel architectures, reducing and optimizing memory- and
interprocess communication has accelerated memory-bounded prob-
lems in linear algebra [4] and graph traversal [5] by as much as an
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order of magnitude. In this paper, we accelerate 2D convolution by
reducing communication with off-chip memory, while also avoiding
long strides in the access pattern. For 3x3 – 7x7 convolution ker-
nels, we produce a speedups of 1.2x-3.4x on the NVIDIA Fermi ar-
chitecture, and 1.3x-4.5x on NVIDIA Kepler. These speedups are not
with respect to CPU implementations; instead these are speedups over
the fastest optimized GPU implementations in related literature and li-
braries. Further, for 2x2 and 3x3 filters, our communication-optimized
convolution algorithm achieves peak memory bandwidth on NVIDIA
Kepler GPUs, and we achieve within a factor of 2 of peak bandwidth
on NVIDIA Fermi GPUs.

A common objection to performing algorithms like convolution
on the GPU is that copying data from the CPU to GPU can be quite
expensive. However, our work is targeted toward image processing
pipelines for applications like feature extraction. These pipelines per-
form a long sequence of image transformations on the GPU, and this
more than offsets the CPU-GPU copy time.

Recent work on domain-specific languages (DSLs) such as
PetaBricks [7] and Halide [8] has sought to autotune or simplify
the development of fast image processing implementations for various
parallel architectures. Our work also employs autotuning, but our
foremost goal is to produce the fastest possible image convolution
implementation for small filter sizes on modern GPUs. Toward this
goal, we explore several performance strategies that these DSLs do
not explore, such as prefetching image regions to register and varying
the amount of work performed by each thread. Ultimately, our work
will inform designers of DSLs and libraries about design parameters
that can improve convolution performance.

The rest of this paper is organized as follows. In Section 2, we
review the relevant aspects of the NVIDIA Fermi and Kepler archi-
tectures, and we benchmark these architectures’ memory hierarchies.
Section 3 describes how we redesign convolution to reduce the time
spent waiting for memory accesses. In Section 4, we implement an
autotuner that explores the 2D convolution design space to minimize
memory communication time on two GPU architectures. We bench-
mark our work against NVIDIA-provided image processing libraries
and other related literature in Section 5, and we conclude in Section 6.

2. ARCHITECTURE
2.1. GPU Architecture Overview
NVIDIA Fermi and Kepler GPUs are comprised of eight to fifteen
streaming multiprocessors (SMs), which each execute up to ∼1000
concurrent threads.1 Users’ GPU-side code is typically implemented
in the CUDA or OpenCL language extensions to C/C++. As in a typi-
cal Intel CPU, the NVIDIA GPUs have off-chip DRAM called global
memory which is amplified by system-managed L1 and L2 caches.
Also like a typical CPU, NVIDIA GPUs have on-chip registers, and

1512 threads per SM on Fermi, and 1536 threads per SM on Kepler.



each thread has its own register address space that is not accessible
to other threads. For the C2050 (Fermi GF100) and GTX680 (Kepler
GK104) GPUs that we use in this paper, each thread is allocated a
maximum of 63 registers (Table 1), and the registers offer sufficient
bandwidth to saturate the arithmetic or floating-point units. NVIDIA’s
recent K20 (Kepler GK110) can allocate up to 255 registers per thread.
Each streaming multiprocessor also has a small read-only constant
memory, which is as fast as the registers. Unlike most CPUs, the
NVIDIA GPUs also have a user-managed fast read-only pipeline to
global memory called the texture cache (texcache), as well as a user-
managed on-chip cache called shared memory (shmem). Shared mem-
ory address spaces are common within each thread block, but not glob-
ally across the GPU.

In Table 1, notice that the on-chip memory is quite limited. If an
implementation uses a large number of registers per thread, then fewer
threads can run concurrently. In other words, when each thread uses a
larger portion of the register space, occupancy goes down.

Table 1. NVIDIA Memory Space per Streaming Multiprocessor
(SM) [9] for C2050 (Fermi) and GTX680 (Kepler).

Max 4-byte Reg-
isters Per Thread

Registers
Per SM

Shmem
Per SM

Texcache
Per SM

C2050 63 128KB 48KB 12KB
GTX680 63 256KB 48KB 48KB

K20 255 256KB 48KB 48KB

Data is persistent in the off-chip memory (global memory and the
texture cache), but the on-chip memory (register and shared memory)
contents are not guaranteed to persist beyond the lifetime of a thread.
As a result, it’s necessary to store data (e.g. images) in the off-chip
memory, and to load this data to registers when performing compu-
tations such as convolution. We spend the remainder of this section
discussing and benchmarking the NVIDIA memory hierarchies, with
the goal of informing convolution algorithm design decisions later in
the paper.

2.2. Benchmarking the Memory Hierarchy
We now turn to benchmarking the key properties of the NVIDIA Fermi
and Kepler memory hierarchy. In Table 2, we empirically benchmark
the bandwidth of the global memory and shared memory, again using
benchmarks described in [10].2 Our global memory bandwidth results
are for memory accesses with unit stride–adjacent threads access adja-
cent global memory addresses. Longer strides reduce the usable mem-
ory bandwidth, because the hardware coalescers are optimized for unit
stride. We direct the interested reader to [11] for a discussion of strides
and coalescing in an earlier generation of NVIDIA hardware.

Notice in Table 2 that the newer GTX680 has slightly less shared
memory bandwidth than the C2050. This is in part due to the fact that
the GTX680 has fewer streaming multiprocessors than the C2050. We
also attempted to benchmark the texture cache, but our microbench-
marking experiments did not come close to attaining the theoretical
texture cache fill rate. So, Table 2 reports the theoretical texture cache
fill rate reported by NVIDIA [12]. A key point about the texture cache
is that Kepler’s fill rate is 2.6x greater than Fermi’s.

3. COMMUNICATION-MINIMIZING CONVOLUTION
IMPLEMENTATION

In the early days of CUDA, NVIDIA advocated storing data (e.g.
images) in global memory, then loading this data to shared memory
(much like loading to cache on a CPU) for computation. However,

2Given this paper’s space limitations, memory bandwidth is our main bench-
mark. Memory latency is also a useful parameter. We suggest [10] for data and
benchmark implementations for NVIDIA memory latency.

Table 2. NVIDIA Memory Bandwidth – Global Memory, Texture
Cache, Shared Memory on C2050 (Fermi) and GTX680 (Kepler).

Measured
Global
Bandwidth

Theoretical
Texcache
Fill-rate [12]

Measured
Shmem
Bandwidth
(full GPU)

C2050 90.4 GB/s 49.4 Gtexels/s 931 GB/s
GTX680 123GB/s 129 Gtexels/s 893 GB/s

Volkov and Demmel showed that higher performance can be obtained
by unrolling loops and prefetching data up to registers instead of work-
ing out of shared memory. As a result, register prefetching and loop
unrolling has become a common practice for linear algebra problems
like matrix-matrix multiplication [13]. The key intuition is that, since
global and and even shared memory communication is expensive,
prefetching and unrolling can increase in-register data reuse. We now
discuss our strategy for optimizing convolution by minimizing the time
spent communicating with the caches and off-chip memory.

Our algorithm works as follows. Each thread begins by prefetch-
ing a region of the image from off-chip memory into its registers.
Prefetching gives the compiler more flexibility to do instruction-level
parallelism (ILP) and to overlap communication with computation.
For example, when using a 3x3 convolution filter, we might prefetch
a 4x4 region of the image into registers. Then, using a user-provided
convolution filter that we store in the constant memory, we compute
a region of output pixels. Finally, we write the output pixels back to
off-chip memory. For the example with a 3x3 filter and 4x4 region in
registers, each thread would produce four output pixels (right side of
Figure 1). We use the term loop unrolling to describe implementations
that produce more than one output pixel per thread. Loop unrolling
reduces the total number of requests for data in off-chip memory, and
it can further increase ILP.

Input Image
(in global memory)

Image region
(in a thread’s registers)

Filter (in on-chip
constant memory)

Output convolved image
(in global memory)

Convolved pixels

1 output pixel per thread 4 output pixels per thread

Fig. 1. Loop unrolling: More work per thread. Left: Typical approach,
one output pixel per thread. Right: Our optimal implementations pro-
duce multiple output pixels per thread.

A slight modification to this approach is to first copy a large image
region to each thread block’s shared memory, then copy from shared
memory to registers. Using shared memory allows for cooperative
loading: adjacent threads can load adjacent pixels from off-chip to
shared memory, which maximizes coalescing even in implementations
with unrolled loops. A trade-off is that we pay bandwidth and latency
penalties for one set of loads from off-chip memory, plus two sets of
accesses to store and load in shared memory.



4. AUTOTUNING
We now turn to exploring the design space of off-chip GPU storage de-
vices (texture cache or global memory), the amount of work to do per
thread (loop unrolling), and whether or not to prefetch data to registers.
We also evaluate the impact of first fetching an image region to shared
memory, then distributing the pixels from shared memory to registers.
Finally, hard-coded loop bounds allow the compiler more freedom to
add further performance improvements, so our autotuner produces a
broad range of hard-coded implementations in the convolution design
space.

We show our autotuner’s findings for 3x3 filters on NVIDIA
Fermi in Figure 2 and on Kepler in Figure 3. Targeting high-resolution
surveillance cameras such as the 9216x9216 CCD595 from Fairchild
Imaging [14], we use 9216x9216 1-channel floating-point images in
Figures 2–5. Bear in mind that convolution’s computation time scales
linearly with the number of pixels. Therefore, the performance stratifi-
cations in these figures generalize to images that are sufficiently large
to saturate the GPU–approximately 640x480 or larger for our unrolled
implementations.

Observe in Figures 2 and 3 that the unrolled (4 or more outputs
per thread) global→register implementations produce similar perfor-
mance regardless of the amount by which we unroll the loop for 3x3
filters. Since more unrolling should lead to more ILP and fewer mem-
ory accesses, we might expect performance to continue to improve as
we increase the amount of work per thread. However, more unrolling
leads to longer strides in memory accesses which, as discussed in Sec-
tion 2.2, reduces coalescing and thus reduces usable bandwidth. Also,
while more unrolling reduces the number of off-chip memory requests,
the L1 and L2 caches enable data reuse and reduce the penalty for the
redundant memory accesses in overlapping window algorithms like
convolution. Further, more unrolling (e.g. 25 outputs per thread) in-
creases the registers allocated per thread, thus reducing occupancy. In
short, we find that unrolling is important for improving performance,
but factors like register pressure, ILP, occupancy, and strided accesses
balance out so that global→register implementations are not particu-
larly sensitive to the amount by which the loop is unrolled.

Also notice in Figures 2 and 3 that the strategy of loading to
shared memory, then to register actually diminishes performance
slightly. While the shared memory step can reduce the number of
memory accesses and increase coalescing, it also adds a thread syn-
chronization and an extra set of load and store penalties from the
shared memory’s bandwidth and latency. In contrast, loading directly
from global memory to registers exploits the L1 cache and requires
no synchronization. As we discussed in the previous paragraph, the
L1 cache is amenable to the overlapping windows used in convolu-
tion. Tables 3 and 4 show that using shared memory doesn’t improve
performance for convolution with 2x2 – 7x7 filters.

For brevity, we limit the autotuning visualization (Figures 2 and 3)
to 3x3 filters, but we summarize the autotuner’s optimal implementa-
tions in Tables 3 and 4. Tables 3 and 4 also show a comparison between
the optimal autotuned results and our basic “global memory only” that
uses hard-coded loop bounds but does not prefetch to register. Out of
the existing 2D convolution implementations that we will benchmark
in Section 5, ArrayFire [6] is the fastest implementation (out of the
implementations that provide the full 2x2 – 7x7 range). With this in
mind, we also provide speedup numbers with respect to ArrayFire in
Tables 3 and 4.

In our experiments, we define the bandwidth bound as the amount
of time to transfer one 9216x9216 image from global memory to reg-
isters and back, not including the overlapping memory accesses that
we use in convolution. In Tables 3 and 4, the “% of BW Bound” col-
umn is calculated as convolutionTime

bandwidthBoundTime
. On Kepler, our convolu-

tion implementations with small filters can exceed the global memory
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Fig. 2. Convolution performance with several memory paths and loop
unrolling configurations on C2050 (Fermi GF100). 3x3 convolution
filters.
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Fig. 3. Convolution performance with several memory paths and loop
unrolling configurations on GTX680 (Kepler GK104). 3x3 convolu-
tion filters.

bandwidth bound by using the texture cache. Notice that our results
are within 2x of the global bandwidth bound for 2x2 and 3x3 filters on
Fermi (Table 3), and within 2x of the global bandwidth bound for 2x2–
5x5 filters on Kepler (Table 4). The GPU allocates a maximum of 63
registers per thread, and each input and output pixel uses one register
in our prefetching implementations, so loop unrolling is quite limited
for the 6x6 and 7x7 filter sizes. However, our prefetching and un-
rolling strategy could be extended to efficiently handle 7x7 and larger
filters. Specifically, we would handle 7x7 and larger filters by having
each thread load the pixels it needs in small blocks, alternating be-
tween loading input pixels and computing a convolved output pixel. In
addition, NVIDIA’s new “Big Kepler” GK110 architecture allocates
up to 255 registers per thread, so we anticipate that this architecture
will be more amenable to unrolling with larger filter sizes.3

5. COMPARISON WITH RELATED WORK
Several libraries such as OpenCV [15], NVIDIA Performance Prim-
itives [16], ArrayFire [6], PetaBricks [7], and CUVILib [17]4 pro-

3NVIDIA K20 (Kepler GK110) was released in late 2012. We were not able
to obtain a K20 in time for press.

4The CUVILib GPU library [17] primarily supports Windows; we were un-
able to get CUVILib’s 2D convolution running on our Linux system.



Table 3. Optimal Convolution Implementations – C2050 (Fermi
GF100). Speedups with respect to our simple “global memory only”
implementation and ArrayFire [6].

Filter
Size

Optimal
Layout

Output
Pixels Per
Thread

Speedup
vs. Array-
Fire

Speedup
vs. Global
Only

% of
BW
Bound

2x2 Global→Register 1 1.2x 1.1x 55%
3x3 Global→Register 4 2.0x 1.5x 53%
4x4 Global→Register 16 2.6x 1.6x 40%
5x5 Global→Register 9 3.1x 1.9x 33%
6x6 Global→Register 4 3.4x 2.1x 25%
7x7 Global→Register 1 1.8x 1.0x 9.4%

Table 4. Optimal Convolution Implementations – GTX680 (Kepler
GK104). Speedups with respect to our simple “global memory only”
implementation and ArrayFire [6].

Filter
Size

Optimal
Layout

Output
Pixels
Per
Thread

Speedup
vs.
Array-
Fire

Speedup
vs.
Global
Only

% of
BW
Bound

2x2 Texcache→Register 4 1.7x 1.9x 107%
3x3 Texcache→Register 4 2.2x 3.9x 101%
4x4 Texcache→Register 9 2.4x 6.1x 87%
5x5 Texcache→Register 9 4.5x 8.8x 83%
6x6 Texcache→Register 4 3.5x 7.5x 49%
7x7 Texcache→Register 1 1.3x 2.9x 14%

vide GPU implementations of 2D image convolution. Analysis of the
OpenCV source code reveals that OpenCV works directly out of the
texture cache, and it does not use hard-coded loop bounds, although it
does store the convolution filter in on-chip constant memory. NVIDIA
Performance Primitives (NPP) [16] is a closed-source codebase, but
decompilation of NPP binaries using cuobjdump suggests that NPP
does not employ register prefetching or loop unrolling in its 2D con-
volution. PetaBricks is a domain-specific language that allows algo-
rithms to have several different implementations, and it incorporates
autotuning and code generation [7]. PetaBricks was recently extended
to generate and optimize OpenCL code for GPUs and CPUs, and it is
capable of generating 2D convolution code [18]. Convolution can also
be phrased as FFT: ifft(fft(image) * fft(filter)). In
addition to testing ArrayFire’s direct 2D convolution, we use Array-
Fire’s wrapper around NVIDIA cuFFT [19] as a baseline for compar-
ing our direct convolution implementations with FFT-based convolu-
tion.

We now compare our autotuned results with the 2D nonseperable
convolution implementations in the aforementioned image processing
libraries. The “Our Communication-Minimizing Autotuned Result”
line in Figures 4 and 5 represents the best implementation produced
by our autotuner, as enumerated in Tables 3 and 4. First, notice that
FFT is one to two orders of magnitude slower than any of our imple-
mentations on both architectures. On Fermi, the NVIDIA Performance
Primitives convolution is 2-3x slower than our naive implementations
without blocking or prefetching, and even slower compared to our au-
totuned results. On Kepler, the NPP performance is almost identical
to our naive implementations. PetaBricks is the only related work that
we tested that uses hard-coded loop bounds, and as a result it is quite
fast. Note that PetaBricks only supports odd-sized convolution filters.
Recall that Tables 3 and 4 show our speedups with respect to Array-
Fire. Our speedups are most significant for small kernels, which offer

a lot of flexibility to unroll loops despite the constrained register file
size.
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Fig. 4. Comparison of our convolution performance with related work
on C2050 (Fermi GF100).
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Fig. 5. Comparison of our convolution performance with related work
on GTX680 (Kepler GK104).

6. CONCLUSIONS
Convolution with small filter sizes is widely used in edge detection,
and it underpins numerous algorithms for feature extraction. Toward
accelerating all of these problems, we accelerate nonseperable 2D
convolution on NVIDIA GPUs. Convolution is bandwidth bound on
GPUs, so we focus on reducing the time spent performing memory
accesses. We achieve the bandwidth bound for 2x2 and 3x3 filters on
NVIDIA Kepler by performing more work per thread and prefetch-
ing to registers. For portable performance in future architectures, we
have implemented an autotuner that explores the design space of 2D
convolution with small filters.

Our approach in this paper has been to optimize memory com-
munication using strategies that do not appear to be implemented in
today’s domain-specific languages (DSLs) and libraries. We plan to
incorporate this paper’s performance optimizations into productivity-
oriented DSLs like Halide or PetaBricks. Further, our study of optimal
register blocking and data movement for 2D convolution will inform
the design of composable, in-register image processing pipelines with
minimal memory communication.
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