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We have 10 years of experience in a broad variety of ML approaches ...

[1] B. Catanzaro, N. Sundaram, K. Keutzer. Fast support vector machine training and classification on graphics processors. International

Conference on Machine Learning (ICML), 2008.

[2] Y.Yi, C.Y. Lai, S. Petrov, K. Keutzer. Efficient parallel CKY parsing on GPUs. International Conference on Parsing Technologies, 2011.

[3] K. You, J. Chong, Y. Yi, E. Gonina, C.J. Hughes, Y. Chen, K. Keutzer. Parallel scalability in speech recognition. IEEE Signal Processing
Magazine, 2009.

[4] F. landola, M. Moskewicz, K. Keutzer. libHOG: Energy-Efficient Histogram of Oriented Gradient Computation. ITSC, 2015.

[5] N. Zhang, R. Farrell, F. landola, and T. Darrell. Deformable Part Descriptors for Fine-grained Recognition and Attribute Prediction. ICCV,
2013.

[6] M. Kamali, I. Omer, F. landola, E. Ofek, and J.C. Hart. Linear Clutter Removal from Urban Panoramas International Symposium on
Visual Computing. ISVC, 2011. 2

Image Classification
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Finding the "right" DNN architecture is replacing broad
algorithmic exploration for many problem:s.

[7] K. Ashraf, B. Elizalde, F. landola, M. Moskewicz, J. Bernd, G. Friedland, K. Keutzer. Audio-Based Multimedia Event Detection with Deep Neural Nets
and Sparse Sampling. ACM ICMR, 2015.

[8] F. landola, A. Shen, P. Gao, K. Keutzer. DeeplLogo: Hitting logo recognition with the deep neural network hammer. arXiv:1510.02131, 2015.

[9] F. landola, M. Moskewicz, S. Karayev, R. Girshick, T. Darrell, K. Keutzer. DenseNet: Implementing Efficient ConvNet Descriptor Pyramids. arXiv:
1404.1869, 2014.

[10] R. Girshick, F. landola, T. Darrell, J. Malik. Deformable Part Models are Convolutional Neural Networks. CVPR, 2015.

[11] F. landola, K. Ashraf, M.W. Moskewicz, K. Keutzer. FireCaffe: near-linear acceleration of deep neural network training on compute clusters. arXiv:
1511.00175, 2015. Also, CVPR 2016, pp. 2592—-2600.

[12] K. Ashraf, B. Wu, F.N. landola, M.W. Moskewicz, K. Keutzer. Shallow Networks for High-Accuracy Road Object-Detection. arXiv:1606.01561, 2016. 3
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The methodology includes a

number of themes, such as...

« Judiciously using
benchmarking

- Efficiently evaluate points in
the design space

* Inclusively identify the
architectural space

« Comprehensively explore
the design space



Outline of our approach to exploring the
design space of CNN/DNN architectures

Theme 1: Defining benchmarks and metrics to evaluate CNN/
DNNs

Theme 2: Rapidly training CNN/DNNs

Theme 3: Defining and describing the CNN/DNN design space

Theme 4: Exploring the design space of CNN/DNN architectures



Theme 1: Defining benchmarks and
metrics to evaluate CNN/DNNs

What exactly would we like our neural network to accomplish?
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Key benchmarks used in four
deep learning problem areas

Type of data | Problem b Siﬁe °fk' CNN/DNN | Hardware | Training
area encimarks | architecture time
training set
text [1] word prediction | 100 billion words 2-layer skip 1 NVIDIA 6.2 hours
(word2vec) (Wikipedia) gram Titan X GPU
audio [2] speech 2000 hours (Fisher 11-layer RNN 1 NVIDIA 3.5 days
recognition Corpus) K1200 GPU
images [3] image 1 million images 22-layer CNN | 1 NVIDIAK20 | 3 weeks
classification (ImageNet) GPU
video [4] activity 1 million videos 8-layer CNN 10 NVIDIA 1 month
recognition (Sports-1M) GPUs

e High-dimensional data (e.g. images and video) tends to require more processing
during both training and inference.

e One of our goals was to find the most computationally-intensive CNN/DNN

benchmarks, and then go to work on accelerating these applications

e Image/Video benchmarks meet these criteria

e Convolutional Neural Networks (CNNs) are commonly applied to Image/Video data

[1] John Canny, et al., "Machine learning at the limit," IEEE International Conference on Big Data, 2015.
[2] Dario Amodei, et al., "Deep speech 2: End-to-end speech recognition in english and mandarin," arXiv:1512.02595, 2015.

[3] Sergio Guadarrama, "BVLC googlenet," https://github.com/BVLC/caffe/tree/master/ models/bvic_googlenet, 2015.

[4] A. Karpathy, et al., "Large-scale video classification with convolutional neural networks," CVPR, 2014.
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Key metrics for specifying CNN/DNN
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To achieve the optimal results on these metrics, it's important to design and/or evaluate:
e CNN architectures

e Software/Libraries

e Hardware architectures
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Evaluating individual

contributions

Accuracy
Quantity of computation
Model Size

Percent of peak
throughput achieved on
appropriate hardware

Power envelope
Peak achievable
throughput

Strategies for evaluating team progress on
full-stack CNN/DNN system development

Evaluating the
overall system

e Energy per frame
e Inference speed per frame
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Theme 2: Rapidly training CNN models

Without exaggeration, training a CNN can take weeks

Train rapidly = More productively explore the design space

10
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Accelerate convolution? fraction of time

*  90% of computation time in a typical CNN is convolution
* 2008: Communication-avoiding GPU matrix-multiplication [1]
* 2013: Communication-avoiding GPU 2D Convolution [2] (our work!)
e 2014: Communication-avoiding GPU 3D Convolution [3]
*  50-90% of peak FLOPS/s for typical DNN problem sizes

@ convolution

@® everything
else

* Put more GPUs into my workstation?
* Can fit up to 8 GPUs into a high-end workstation. Scale CNN training over
these?

Scale CNN training across a cluster of GPU-enabled ¥
servers? Mi& e

* We enable this in our FireCaffe framework [4]

I_\

[1] V. Volkov and J. Demmel. Benchmarking GPUs to tune dense linear algebra. Supercomputing, 2008.

[2] F.N. landola, D. Sheffield, M. Anderson, M.P. Phothilimthana, K. Keutzer. Communication-Minimizing 2D Convolution in GPU

Registers ICIP, 2013.

[3] S. Chetlur, et al. cuDNN: Efficient Primitives for Deep Learning. arXiv, 2014.

[4] F.N. landola, K. Ashraf, M.W. Moskewicz, and K. Keutzer. FireCaffe: near-linear acceleration of deep neural network training on

compute clusters. CVPR, 2016. 1 1
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e Next, we discuss strategies for scaling up CNN training

Warmup: Single-Server CNN training

VD(0:1023) @ VD(0:1023)
<€

VD = data gradients, “bottom_diff”
VW = weight gradients,

VD(0:1023)

Is this
a cat?

“weight dift”

12
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/m Approach #1:
Pipeline parallelism

x512
conyd conv2 conv3 output

Fatal flaws:

« Parallelism'is limited by number of layers

+ Communication is dominated by the layer w/ the

K largest output (which can be larger than all of the

weights (W) combined)

N

4 "cat"

/

ay. Four approaches to parallelizing CNN training

e

Fatal flaws:

« Typical approach: one model
per quadrant of the image

« 4x more FLOPS & 4x more
parallelism, BUT:

« No decreasefin training time
over single-model

« Norincrease in accuracy over
&ingle—model

Approach #2:
Sub-image parallelism{1,2]

N

[1] T. Chilimbi, et al. Project Adam: Building an Efficient and Scalable Deep Learning Training System OSDI, 2014.

[2] J. Dean, et al. Large Scale Distributed Networks. NIPS, 2012.

[3] G. Fedorov, et al. Caffe Training on Multi-node Distributed-memory Systems Based on Intel Xeon Processor E5 Family, 2015.
[4] F.N. landola, K. Ashraf, M.W. Moskewicz, and K. Keutzer. FireCaffe: near-linear acceleration of deep neural network training on compute clusters. CVPR, 2016. 1 3
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4 "cat"

Approach #1:
Pipeline parallelism

x512

output

conyvd
Fatal flaws:

« Parallelism'is limited by number of layers
+ Communication is dominated by the layer w/ the

conv?2 conv3

largest output (which can be larger than all of the /

weights (W) combined)

YA

Approach #3: \
arallelism [1,2,3]

Approach: Give a subset of the weights
in each layer to each worker

This is a scalable approach for some
classes of CNNs (will discuss in detail
shortly)

e

« Typical approach: one model
per quadrant of the image

Fatal flaws:
4x more FLOPS & 4x more
parallelism, BUT:

» No decreasesin training time
over single-model

Approach #2:
Sub-image parallelism1,2]

=
Model #3

N

« Norincrease in accuracy over
&ingle—model
/ Approach #4:

Data parallelism [4]

@ ‘Worker 031 VD31 031
Training Data 0 / A \
[ e [
23]

update
T W vD9:
raining Data orker 'D(992:1023) odel
31 31 — weights

VD(992:1023)

« Approach: Give each worker a subset of the batch
« This is a scalable approach for convolutional NNs

KTraining Data O Worker

/

\ (will discuss in detail shortly)

AN

J

[1] T. Chilimbi, et al. Project Adam: Building an Efficient and Scalable Deep Learning Training System OSDI, 2014.

[2] J. Dean, et al. Large Scale Distributed Networks. NIPS, 2012.

[3] G. Fedorov, et al. Caffe Training on Multi-node Distributed-memory Systems Based on Intel Xeon Processor E5 Family, 2015.
[4] F.N. landola, K. Ashraf, M.W. Moskewicz, and K. Keutzer. FireCaffe: near-linear acceleration of deep neural network training on compute clusters. CVPR, 2016. 14
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Data Parallelism vs. Model Parallelism
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Anatomy of a CNN convolutional layer
D: Input data to

/ this layer
(x batch size)

W: Weights
(x #filters)

Model parallelism: give a subset of the weights to each worker
Data parallelism: give a subset of the data to each worker

Model parallelism is more scalable if: more weights (W) than data (D) per batch

Data parallelism is more scalable if: more data (D) than weights (W) per batch
* GooglLeNet CNN: if we choose data parallelism instead of model parallelism, 360x
less communication is required

15
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« Conventional wisdom: we just need to find enough parallelism
dimensions (data parallel, model parallel, pipeline parallel,
etc.)

— Google [1], CMU [2], Microsoft [3], Intel [4], ...

« But, our experience in scaling applications has taught us...
— Simple computational/communication mechanisms scale better
— The key is always to refactor/re-architect the problem to maximally
harvest the underlying data parallelism

[1] J. Dean, et al. Large Scale Distributed Networks. NIPS, 2012.

[2] M. Li, et al. Parameter Server for Distributed Machine Learning. NIPSW, 2013.

[3] T. Chilimbi, et al. Project Adam: Building an Efficient and Scalable Deep Learning Training System OSDI, 2014.

[4] G. Fedorov, et al. Caffe Training on Multi-node Distributed-memory Systems Based on Intel Xeon Processor E5 Family, 2015.

16
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Harvesting Data Parallelism
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« Requires careful attention to all aspects of the deep learning
problem (we've put our "intelligence beans" here):

Architecting Efficient Distributed Communication
. e Hardware network and its logical topology
We will give a taster of L. . . . .
this next e Optimizing collective communication (e.g. reductions)
e Quantized/compressed communication of gradient
updates
Re-architecting CNNs
We will discuss in e CNN architecture
detail toward the end — e Batch size and its relationship to other
of the talk hyperparameters
f Architecting Efficient Computation
e Careful selection of computational HW/processors
In our group, Matt — e Code-generation of optimized kernels targeted to
Moskewiczowns this  [£, 7 arersmeme specific HW and specific CNN problem sizes
,f e http://github.com/forresti/convolution
[ I — e http://github.com/moskewcz/boda

17




ADSPIRE Scaling up data parallel training:

Berkeley Parameter Server vs. Reduction Tree
Titan rer
orcomPYs /L
SUP O 100 i | A B | - T T T

? 90 + parameter server —O— ol
= reduction tree
o 80 b =
@ 70F Measuring communication only - =
‘E 28 L (if computation were free) 7| |2
*2 40 + il g
S a0l 118
g 5
5 20 F 1 |
£ 10} L
(@)}
3 oLl T
= 2 4 8 16 32 64 128

Number of worker nodes

= Most related work (e.g. Google DistBelief [1]) uses a
parameter server to communicate gradient updates
— serialized communication: O(# workers) * 53MB for GooglLeNet

= We use an Allreduce (e.g. reduction tree)
— serialized communication: O( log(# workers) ) * 53MB for GooglLeNet
— this is a collective communication operation - requires synchrony

18
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Deep Neural Networks can achieve high
accuracy with relatively few parameters |

ImageNet-1k Top-5 accuracy
NN
o
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T
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< more scalable training

0 1 L 1 1 1 ] 1
0 100 200 300 400 500 600 700 800
MB of parameters in model

= Data parallelism communication speed:
— invariant to batch size
— scales inversely with number of parameters in model

= Prescriptively: Fewer parameters = more scalability for data parallelism

Forrest landola forresti@eecs.berkeley.edu 19
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Our Current Results

Enormous CNN models (GooglLeNet)

Hardware Net Batch Initial Epochs | Traintime | Speedup Top-1 Top-5
Size Learning ImageNet | ImageNet
Rate Accuracy | Accuracy
Caffe single K20 | GooglLe- 32 0.01 64 20.5 days 1 68.3% 88.7%
GPU Net X
FireCaffe 32 K20 GoogLe- 1024 0.08 72 23.4 hours 2 O 68.3% 88.7%
(ours) GPUs Net X
(Titan
cluster)
FireCaffe 128 K20 GoogLe- 1024 0.08 72 10.5 hours 47 68.3% 88.7%
(ours) GPUs Net X
(Titan
cluster)

At an invitation-only deep learning event in January 2015, with key individuals from Google,
Baidu, Facebook, Microsoft, and Twitter in the audience:
Forrest: "has anyone else trained GoogLeNet in 10.5 hours or less?"
Audience: (No.)

See our paper for more details:

[1] F.N. landola, K. Ashraf, M.W. Moskewicz, and K. Keutzer. FireCaffe: near-linear acceleration of
deep neural network training on compute clusters. CVPR, 2016.

20




Theme 3: Defining and describing
the design space of CNNs

Highlighting some key tradeoffs in the design space of CNNs

21
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The number of channels in the Q@\%
current layer 1s determined ‘py &V
the number of filters (numFilt)
in the previous layer. .
\%
&
N
&
-
k>
an = |
g x numFilt
o )
filterW
’ x batch size
) >
dataW

Bear in mind that CNNs are comprised of many layers, L, ..., L,
22
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Examples of Local changes to CNNs

e Change the number of channels in the input data

e Change the number of filters in a layer

e Change the resolution of the filters in a layer (e.g. 3x3 = 6x6)
e Change the number of categories to classify

Effect of a Local change:
A Local change to layer L; only affects the dimensions of layers L;and L,

Examples of Global changes to CNNs
e Change the strides or downsampling/upsampling in a layer
e Change the height and width of the input data (e.g. 640x480 - 1920x1440 image)

Effect of a Global change:

A Global change to layer L; affects the dimensions of all downstream layers: L L

i+l’ [XXY] n

23



Effect of Local and Global changes to
Berlcley parallelism during CNN training
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Recall the distributed data-parallel approach to training that
we described earlier in the talk.

e Local changes involve modifying the dimensions of filters or

channels.
e Consider a local change where we increase the number of filters in a layer
e Effect on training: This local change increases the number of parameters
and therefore increases the quantity of communication required during
training.

e Global changes involve modifying the dimensions of data or

activations (i.e. the output data from the layers)
e Consider a global change where we decrease the stride of a layer
(increasing the number of activations it produces)
e Effect on training: This global change does not affect the number of
parameters and therefore does not change the quantity of communication
required during training.

24
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Effect of Local and Global changes to
parallelism during CNN training

modification type of A Qty of A Qty of A Qty of
modification output params computation
Initial CNN (NiN [82]) none 1x 1x 1x
4x more input channels Local 1x 1x 1.3x
4x more filters in conv8 Local 1.1x 1.1x 1.1x
4x larger filter resolution Local 1x 1.3x 1.3x
in conv7
4x more categories to Local 1x 1.4x 1.1x
classify
remove pool3 Global 2.6x 1x 3.8x
downsampling layer
4x larger input data Global 4.2x 1x 4.3x

resolution

25



Theme 4: Exploring the
design space of CNNs

Let's take what we've learned so far and start exploring!

26



_JINSPIRE

FireNet: CNN architectures with few weights
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e Fewer weights in model - more scalability in training

e Observation: 3x3 filters contain 9x more weights and
require 9x more computation than 1x1 filters.

e SqueezeNet is one example of a FireNet architecture

Image convolution in 2D

New pixel value (destination pixel)

Our FireNet CNNs

VGG [1] CNNs are built out of these ...,
are built out of these modules:
modules:  Ldconv N " N
(3x3 conv ) | xpan
\L %conv 3x3 conv
3x3 conv \ ‘/
\ ) concatenate

[1] K. Simonyan, A. Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition arXiv:1409.1556, 2014. 27
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Fire Module in Detail
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YA
Sque 1x1 convolution filters
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1x1 and 3x3 convolution filters
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o>
O 7x7 conv, stride=2 "squeeze” |
J/ Convolution
sl e In"expand" layers half the filters

expand are 1x1; half the filters are 3x3

Pooling
\_ e Maxpool after convl, fire4, fire8
. : " (3x3 kernel, stride=2)
° squeeze
5 . e Global Avgpool after conv10
iy down to 1x1x1000

"expand"

concatenate

\_

d“NXD

1x1 conv, 1000 outputs

average-pool to 1x1x1000

v

" dog"
29



Tradeoffs in "squeeze" modules

Berkeley
1 " H
'squeeze” * The "squeeze” modules get their name because
they have fewer filters (i.e. fewer output
A Ldconv N channels) than the "expand" modules
/\ ‘expand” o A natural question: what tradeoffs occur when we
vary the degree of squeezing (number of filters) in
. 1x1 conv 3x3 conv the "squeeze" modules?
\ [/ Squeeze Ratio
concatenate oo 0125025 0.5 0.75 1.0
"SqueezeNet" 85.3% 86.0% ;
- 80.3% accuracy accuracy e
o\o accuracy —_— ; .
S 80p i 13MBof =~ 19MBof =~
® 4.8 MB of weights weights
5 weights : !
O ; :
. ; 1 T s S :
S = number of filters in "squeeze -
E = number of filters in "expand” §
Squeeze Ratio = S/E S B0 | ]
for a predetermined number of filters in E o
T
. = AN [ PR N — :
In these experiments: the expand c
modules have 50% 1x1 and 5
50% 3x3 filters 0 i | i i ,
48 7.6 13 19 24 30

MB of weights in model
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&

1x1 conv \\\

"expand"

1x1 conv 3x3 conv

\\§~‘T\\A B//
concatenate

Each point on this graph is the
result of training a unique CNN
architecture on ImageNet.

ImageNet-1k Top-5 accuracy (%)

Judiciously using 3x3 filters in
"expand"” modules

‘squeeze” « |n the "expand" modules, what are the tradeoffs when

we turn the knob between mostly 1x1 and mostly 3x3

filters?

Hypothesis: if having more weights leads to higher
accuracy, then having all 3x3 filters should give the

highest accuracy

Discovery: accuracy plateaus with 50% 3x3 filters

Percent of filters in 'expand' modules that are of size 3x3
1.0 12,5 25.0 37.5 50.0 62.5 75.0 87.5 99.0

100 ! T T !
: : 85.3% 85.3%
76.3% . accuracy - accuracy
accuracy : ~ : 4 e
8ok ... A oG AU S  DUNE S
: - 3 13 MB of 21 MB of
5.7 MB of ‘ weights weights
weights 1.6x decrease in :
60 e e ....... ...... ........ communication _
: : : : overhead :
40 ,,,,,,, ,,,,,, ........ ....... ....... ....... _
Yo || PRSP ....... ______ ........ ....... ....... _______ ~
O | | | | I | | 1 |

57 7.4 93 11 13 15 17 19 21
MB of weights in model
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Fewer Weights in CNN-> More Scalability in

Berkele -
i rcs s Training
145x speedup
Stron Scalm
160X —— £ € for FireNet
B L [13MB] FireNet w/ squeeze ratio = 0.5 ;
140x| |~ [53MB] GoogLeNet
120x% ____________________________________________________________________________________________________________

. .
(eC? e® ) e . 47x speedup |
\)5'\(\%?\ Auste p10)'d TRE S - - for GoogleNet ]
e 120 Y4 e f
X1 71632 64 128 256

Number of Workers (GPUs)
32
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One of our new CNN architectures:
SqueezeNet
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The SqueezeNet
Architecture [1]

o)
I

maxpool/2

SqueezeNet
is built out of

"squeeze"

"Fire modules:"

"expand"

j

e )
512

maxpooI/Z

[1] F.N. landola, M. Moskewicz, K. Ashraf, S. Han, W. Dally, K. Keutzer. SqueezeNet:
AlexNet-level accuracy with 50x fewer parameters and <1MB model size. arXiv, 2016.

1000

T http://github.com/DeepScale/SqueezeNet

"labrador
(S} =etrieves

dog" E;E;



SqueezeNet vs. Related Work
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]()23V
e Small DNN models are important if you... ;2 (@))

o The model compression community often targets AlexNet as a DNN model to compress |

Compression DNN Original Compressed | Reduction in Top-1 Top-5
Approach Architecture Model Size Model Size Model Size ImageNet | ImageNet
vs. AlexNet Accuracy | Accuracy
None (baseline) AlexNet [1] 240MB 240MB 1X 57.2% 80.3%
SVD [2] AlexNet 240MB 48MB 5x 56.0% 79.4%
Network Pruning [3] AlexNet 240MB 27MB 9x 57.2% 80.3%
Deep Compression [4] AlexNet 240MB 6.9MB 35x 57.2% 80.3%
None SqueezeNet [5] 4.8MB 4.8MB 50x 57.5% 80.3%
(ours)
Deep Compression [4] | SqueezeNet [5] 4.8MB 0.47MB 510x 57.5% 80.3%
(ours)

[1] A. Krizhevsky, |. Sutskever, G.E. Hinton. ImageNet Classification with Deep Convolutional Neural Networks. NIPS, 2012.

[2] E.L .Denton, W. Zaremba, J. Bruna, Y. LeCun, R. Fergus. Exploiting linear structure within convolutional networks for efficient
evaluation. NIPS, 2014.

[3] S. Han, J. Pool, J. Tran, W. Dally. Learning both Weights and Connections for Efficient Neural Networks, NIPS, 2015.

[4] S. Han, H. Mao, W. Dally. Deep Compression..., arxiv:1510.00149, 2015.

[5] F.N. landola, M. Moskewicz, K. Ashraf, S. Han, W. Dally, K. Keutzer. SqueezeNet: AlexNet-level accuracy with 50x fewer 34
parameters and <1MB model size. arXiv, 2016.



(Bonus!) Theme 5: Effectively deploying
the new CNNs

Joint work with Bichen Wu. This will go in his dissertation!

35
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Object classification Object detection

e We originally trained SqueezeNet on the problem of object
classification

e The highest-accuracy results on object detection involve pre-training a

CNN on object classification and then fine-tuning it for object detection
e Modern approaches (e.g. Faster R-CNN, YOLO) typically modify design of the
CNN's final layers so that it can localize as well as classify objects

Next: Let's give this a try with SqueezeNet!
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Method Average Mean Average Model Size Speed (FPS)
Precision Precison on Titan X GPU
on KITTI [1] on KITTI [1] object
pedestrian detection detection dataset
MS-CNN [2] 85.0 78.5 - 2.5 FPS
Pie [3] 84.2 69.6 - 10 FPS
Shallow Faster 82.6 - 240 MB 2.9 FPS
R-CNN [4]
SqueezeDet [9] 82.9 76.7 7.90 MB 57.2 FPS
(ours)
SqueezeDet+ [5] 85.4 80.4 26.8 MB 32.1 FPS
(ours)

[1] A. Geiger, P. Lenz, R. Urtasun. Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite. CVPR, 2012
[2] Z. Cai, Q. Fan, R. Feris, N. Vasconcelos. A unified multi-scale deep convolutional neural network for fast object detection. ECCV, 2016.
[3] Anonymous submission on the KITTI leaderboard.
[4] K. Ashraf, B. Wu, F.N. landola, M.W. Moskewicz, K. Keutzer. Shallow Networks for High-Accuracy Road Object-Detection. arXiv:
1606.01561, 2016.
[5] Bichen Wu, Forrest landola, Peter Jin, Kurt Keutzer, "SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for
Real-Time Object Detection for Autonomous Driving," In Review, 2016.
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Summary

Berkeley
Artificial Intelligence Research

Theme 1: Defining benchmarks and metrics to evaluate CNN/
DNNs

e Accuracy, speed, energy, model size, and other metrics can all play a
critical role in evaluating whether a CNN is ready for practical deployment

Theme 2: Rapidly training CNN/DNNs
e 47x speedup on 128 GPUs

Theme 3: Defining and describing the CNN/DNN design space
* A condensed mental model for deciding how a modification to a CNN wiill
impact distributed training time

Theme 4: Exploring the design space of CNN/DNN architectures
* Discovered a new CNN that is 500x smaller than a widely-used CNN with
equivalent accuracy

Bonus! Theme 5: Effectively deploying the new CNNs
* Defining the state of the art on KITTI object detection in terms of speed,
model size, and accuracy!
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What am | doing next?

||||||||||||||||||||||||||||
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Perception for autonomous vehicles

We're hiring... email me if you'd like to chat about this. ©
forrestlddeepscale.al
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Questions?
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